二
太极图的S曲线,并不是随意性的美工图,它实际上贯彻了以勾股定理为基础的中国古代数学智慧。
中国人对勾股定理的描述,最少可以上溯至三千年前西周初年的商高,而古巴比伦人应用勾股定理,大约在公元前三千年前。公元前六世纪古希腊人毕达哥拉斯对勾股定理的证明,使勾股定理在欧洲有了“毕达哥拉斯定理”的名称。如果从勾股定理入手,通过单位正方形内的内切圆,应用阿基米德定理的杠杆平衡原理和模糊数学的核心思想,可以用一个初等函数精确地表达太极图的S曲线。这一论证将表明,太极图是可以用数学语言表达的,并不是无标准方程、无标准几何图形的。其意义不仅在于充分表达了中国太极图的科学性,也充分表达了太极图反映事物存在和发展的本根依据。
一般来说,我们认为,当一条线段绕着它的一个端点在平面内旋转一周时,它的另一端的轨迹叫作圆;在同一平面内,到定点的距离等于定长的点的集合叫圆。圆的定义也可由众所周知的勾股定理而得,“一个直角三角形两个直角边的平方之和等于斜边的平方”,也就是说,当斜边定长时,两个直角边此消彼长的点的集合恰恰就是圆的轨迹。几何图形如图1,代数表达式为:
a2+b2=c2,或(a/c)2+(b/c)2=1(1)
我国东汉末的数学家赵爽在注《周髀算经》时就说:“勾股各自乘,并之为弦实。开方除之,即弦。” 赵爽并依此还创造了“勾股圆方图”。
若用x和y分别表示两个直角边与斜边所对应正方形面积的商值,并分别定义这个商值为这个三角形的阳值和阴值:
即令x=a2/c2,y=b2/c2
则有x+y=1(2)
这意味着无论两个直角边怎样变化,其商值之和恒等于“1”,即它们的阳值和阴值之和恒等于“1”。其几何形式如图2。
∵a,b∈(0,c),∴x,y∈(0,1).
x=a2/c2=(c2-b2)/c2=sin2α
=(1-cos2α)/2:=P(α)
α∈(-∞,+∞)
y=b2/c2=(c2-a2)/c2=cos2α
=(1+cos2α)/2:=N(α)
α∈(-∞,+∞)(3)
如果说式(1)和图1是欧几里得几何的基石,那么图2和式(2)则提出了模糊集合的概念,开启了现代数学的发展之路。把它们联系起来,则有如下概念:
勾股定理的本质内涵是指一个单位直角三角形的斜边所对应的面积恒等于两个直角边所对应的面积之和。我们假定可以选择一个特定的城市,如甘肃省张掖市。这个城市由沙漠和绿洲两部分构成,有水即为绿洲,无水则为沙漠,但沙漠面积和绿洲面积之和总不会变。若把张掖这个城市的总面积看作一个单位面积“一”,那么,绿洲面积和沙漠面积之和则恒等于“1”,当绿洲面积变大时,沙漠面积就会变小,反之亦然(图4)。而这个此消彼长的点的集合恰恰就是圆的轨迹。
又因为x=1-y,y=1-x,说明阳函数和阴函数相反相成、偶对平衡、对立统一,像量子纠缠一样,总是彼此以对方的存在为依据,相互纠缠、相互叠加,总值恒等于“1”,即绿洲面积是关于沙漠面积的偏差值,而沙漠面积是关于绿洲面积的偏差值,它们的偏差值之和恒等于“1”。然而,张掖的大部分区域是在绿洲和沙漠之间,就像是在x+y=1这条线段上的点一样,总处于[0,1]这个区间内,所不同的是相对于某一个平衡值而言,是绿洲属性更强一点,还是沙漠属性更强一点。对于一个系统,我们完全可以在某一单纯属性上,就两个相反相成的状态,进行集合分类,就像土壤的含水量可以分为干湿两个相反相成的集合,经济运行状态也可以分为积累和消费两个相反相成的集合。大道至简,简而言之,就像我们对待一切事物的主观态度一样,都可以以某一个客观平衡值,将事物分为正反、白黑、上下、左右、大小、轻重,甚至是好和坏两个相反相成的状态进行集合分类(我们可以将此集合分类法记为:↑0↓)。尽管如此,但事物状态的真实存在大多是在黑白的区间内,不是简单的非白即黑的罗素悖论,而更多的是亦白亦黑,所不同的是黑白大小比例不同而已,这也是模糊数学之由来。
如此看来,弦、勾股定理和圆的本质内涵是一致的,动则为圆,静则为矩,都是关于“一”的哲学和科学。实际上,源于我国魏晋时期的玄学,已经是在先秦易学思想“一阴一阳之谓道”“道生一,一生二,二生三,三生万物”关于阴阳消长、此消彼长的哲学思辨和《周髀算经》《九章算术》关于圆、勾股定理的数形学理分析基础之上才兴起的,它一直深刻地影响着中国后期的文化。中国的水墨画就是这一思想的典型代表,如果说把黑白定义为0和1或者阴和阳,那么,大千世界就会随着墨香的浓淡深浅在黑白之间,在[0,1]的区间内,在阴阳此消彼长的变化中惟妙惟肖地飘逸呈现出来,把人带入天地间的无限遐想之中。从这个角度讲,我们完全有理由说,中国的水墨画就是一张阴阳图,就是一张模糊数学的集合图。不仅如此,它也是辩证唯物主义“一分为二”的数学模型图,视事物为一个相反相成的矛盾统一体↑0↓,矛盾着的两个方面相互作用此消彼长推动事物的发展。
已有0人发表了评论